Effects of Electrical and Physical Properties of Barefaced Terrain on Backscatter response

نویسندگان

  • Maurice Ezeoke
  • Kenneth Tong
  • Amin Amiri
  • Allan Al-Armaghany
چکیده

We investigate the effect of moisture on the dielectric permittivity and surface roughness with backscatter response from four different barefaced terrain. They represent four classes in the Wentworth grain size classification scale. We improve on previous technique used to remotely identify oil sand reservoirs through accurate modeling of the terrain electromagnetic (EM) reflectivity. First we derived the spectroscopic finger print of the four sample classes at high resolution (8cm) covering near-infrared and mid-infrared EM regions to investigate the electrochemical bonds present. Then we varied the moisture level of the samples to observe the variation in dielectric permittivity to provide new information on the electrical properties of the sand terrain. Finally development of 3D EM computer models to investigate the complex relationship between barefaced terrain properties with the Radar back scatter response is outlined. The spectroscopic survey observed the reststrahlen effect due to the presence of quartz while calibrated measurements of dielectric response was achieved. Keywords—Backscatter, Barefaced terrain, Beach Sand, Computer Simulation, Loamy sand, Wentworth Classification, Dielectric constant

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monte Carlo Study of the Effect of Backscatter Materail Thickness on 99mTc Source Response in Single Photon Emission Computed Tomography

Introduction SPECT projections are contaminated by scatter radiation, resulting in reduced image contrast and quantitative errors. Backscatter constitutes a major part of the scatter contamination in lower energy windows. The current study is an evaluation of the effect of backscatter material on FWHM and image quality investigated by Monte Carlo simulation. Materials and Methods SIMIND program...

متن کامل

The effects of Na & Mg adsorption on the electrical properties of SiCNTs: A DFT study

In the present study we focused on the electronic and structural properties of Na and Mg adsorption on the surface of the (6, 6) armchair SiCNTs. The adsorption energy (Eads), band gap energy (Eg), partial density of state (PDOS), chemical potential (μ), global hardness (η), electrophilicity index (ω), global softness (S), work function values (φ) and work function change (Δφ) are calculated by...

متن کامل

Role of Intensive Milling on Microstructural and Physical Properties of Cu80Fe20/10CNT Nano-Composite

Carbon nano-tube (CNT) reinforced metal matrix nano-composites have attracted a great deal of attention in recent years due to the outstanding physical and mechanical properties of CNTs. However, utilizing CNT as reinforcement for alloy matrixes has not been studies systematically and is still a challenging issue. In the present study, Cu80Fe20/10CNT nanocomposite was synthesized by mechanical ...

متن کامل

Enhanced Physical Properties Of Indium Tin Oxide Films Grown on Zinc Oxide-Coated Substrates

Structural, electrical and optical properties of indium tin oxide or ITO (In2O3:SnO2) thin films on different substrates are investigated. A 100-nm-thick pre-deposited zinc oxide (ZnO) buffer layer is utilized to simultaneously improve the electrical and optical properties of ITO films. High purity ZnO and ITO layers are deposited with a radio frequency sputtering in argon ambient with plasma p...

متن کامل

Hybrid nanofluid based on CuO nanoparticles and single-walled Carbon nanotubes: Optimization, thermal, and electrical properties

The purpose of this study is to use the thermal and electrical conductivities of copper oxide nanoparticles and carbon nanotubes for the preparation of high-performance nanofluids for achieving better heat transfer properties. These nanofluids consist of a water/Ethylene Glycol solution containing single-wall carbon nanotubes (SWCNTs) and copper oxide nanoparticles (CuONPs). The effects of such...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014